Stabilizing clay soils incorporating nano materials (through a sustainable development approach)

Document Type: Research Paper


1 Associate Professor in Geotechnical Engineering, School of Civil Eng., Shahid Rajaee Teacher Training University (SRTTU), Tehran- Iran.

2 Master in Geotechnical Engineering SRTTU, 1678815811, Tehran, Iran.

3 PhD. Student in Geotechnical Engineering, SRTTU, 1678815811, Tehran, Iran.


In this paper, the performance of some nano materials including multi wall carbon nano tubes (MWCNTs), carbon nano fibers (CNFs), nano silica, nano kaolinite and nano montmorillonite is compared in order to evaluate geotechnical properties and elastic modulus of the stabilized clayey soils. The mechanical tests were carried out on samples treated by nano particles indicate that MWCNTs and CNFs are essential additives for improving the physical properties of unstable soils including Atterberg limits, optimum moisture content and maximum dry density. Small amounts of nano silica and nano kaolinite particles increased the maximum dry density, the unconfined compressive strength (UCS) and the elastic modulus (E) results. However, a reverse trending in optimum moisture content is observed in    which nano silica treated the soil towards the higher water contents. In contrast, nano kaolinite performs a higher positive influence on the stiffness of the treated specimens using a significant amount of less water absorption. It is concluded that the major difference between the performances of all the studied nano particles includes that nano montmorillonite reduced the dry density of soil as the ω% increased. This type of soil stabilizing is in agreement with sustainable development strategies.


1          Alsharef, J., Taha, M. R., Firoozi, A.A., & Govindasamy, P. (2016). Potential of using nanocarbons to stabilize weak soils. Applied and Environmental Soil Science, 2016, 1-9. doi:

2          Alujas, A., Fernández, R., Quintana, R., Scrivener, K. L., & Martirena, F. (2015). Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Applied Clay Science, 108, 94-101. doi:

3          Azadegan, O., Jafari, S. H., & Li, J. (2012). Compaction characteristics and mechanical properties of lime/cement treated granular soils. Electron. J. Geotech. Eng, 17, 2275-2284. doi:

4          Bahmani, S. H., Huat, B. B., Asadi, A., & Farzadnia, N. (2014). Stabilization of residual soil using SiO2 nanoparticles and cement. Construction and Building Materials, 64, 350-359. doi:

5          Basha, E., Hashim, R., Mahmud, H., & Muntohar, A. (2005). Stabilization of residual soil with rice husk ash and cement. Construction and Building Materials, 19(6), 448-453. doi:

6          Baziar, M. H., Ghazi, H., & Mirkazemi, S. M. (2010). Effect of nanoclay additives on the properties of engineering – geotechnical soil. In Proceedings of the4th International Conference on Geotechnical Engineering and Soil Mechanics, Tehran, 2–3 November 2010.

7          Changizi, F., & Haddad, A. (2017). Improving the geotechnical properties of soft clay with nano-silica particles. Proceedings of the Institution of Civil Engineers-Ground Improvement, 170(2), 62-71. doi:

8          Correia, A. A. S., Casaleiro, P. D., & Rasteiro, M. G. B. (2015). Applying multiwall carbon nanotubes for soil stabilization. Procedia Engineering, 102, 1766-1775. doi:

9          Correia, A. A. S., & Rasteiro, M. G. (2016). Nanotechnology applied to chemical soil stabilization. Procedia Engineering, 143, 1252-1259. doi:

10        Franco, F., Pérez-Maqueda, L., & Pérez-Rodrıguez, J. (2003). The influence of ultrasound on the thermal behaviour of a well ordered kaolinite. Thermochimica Acta, 404(1-2), 71-79. doi:

11        Franco, F., Pérez-Maqueda, L., & Pérez-Rodrıguez, J. (2004). The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. Journal of Colloid and Interface Science, 274(1), 107-117. doi:

12        Gelsefidi, S. A. R. S., & Mamaghanian, J. (2013). Stabilization of a weak low plasticity clay soil using nanomaterial. In Proceedings of theProceedings of the 5th International Young Geotechnical Engineers' Conference: 5th IYGEC 2013.

13        Ghazavi, M., & Bolhasani, M. (2010). Unconfined compression strength of clay improvement with lime and nano-silica. In Proceedings of the6th International Congress on Environmental Geotechnics, 8–10 November 2010, 1490–1495, New Delhi, India,.

14        Ghobadi, M., Abdilor, Y., & Babazadeh, R. (2014). Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bulletin of Engineering Geology and the Environment, 73(2), 611-619. doi:

15        Hawkes, P. W., (2004). Advances in imaging and electron physics, Academic press.

16        Jauberthie, R., Rendell, F., Rangeard, D., & Molez, L. (2010). Stabilisation of estuarine silt with lime and/or cement. Applied Clay Science, 50(3), 395-400. doi:

17        Khalid, N., Arshad, M. F., Mukri, M., Mohamad, K., & Kamarudin, F. (2005). The properties of nano-kaolin mixed with kaolin. The Electronic Journal of Geotechnical Engineering (EJGE). doi:

18        Khalid, N., Arshad, M. F., Mukri, M., Mohamad, K., & Kamarudin, F. (2015). Influence of nano-soil particles in soft soil stabilization. Electronic Journal of Geotechnical Engineering, 20(2), 731-738. doi:

19        Khemissa, M., & Mahamedi, A. (2014). Cement and lime mixture stabilization of an expansive overconsolidated clay. Applied Clay Science, 95, 104-110.

20        Kirithika, M., Prabu, T., & Stalin, V. (2015). Influence of nanosized silica and lime particles on the behaviour of soil. In Proceedings of the 50th Indian Geotechnical Conference, 17th – 19th DECEMBER 2015, Pune, Maharashtra, India.


21        Kong, R., Zhang, F., Wang, G., & Peng, J. (2018). Stabilization of loess using nano-SiO2. Materials, 11(6), 1014. doi:

22        Lang, K., Hite, D. A., Simmonds, R. W., McDermott, R., Pappas, D. P., & Martinis, J. M. (2004). Conducting atomic force microscopy for nanoscale tunnel barrier characterization. Review of Scientific Instruments, 75(8), 2726-2731. doi:

23        Lázaro, B. B. (2015). Halloysite and kaolinite: two clay minerals with geological and technological importance. Revista de la Academia de Ciencias Exactas, Físicas, Químicas y Naturales de Zaragoza, (70), 7-38. doi:

24        Liu, Q., Li, X., Cheng, H. (2016). Insight into the self-adaptive deformation of kaolinite layers into nanoscrolls. Applied Clay Science, 124, 175-182. doi:

25        Lu, S-G., Sun, F-F., & Zong, Y-T. (2014). Effect of rice husk biochar and coal fly ash on some physical properties of expansive clayey soil (Vertisol). Catena, 114, 37-44. doi:

26        Luo, H-L., Hsiao, D-H., Lin, D-F., & Lin, C-K. (2012). Cohesive soil stabilized using sewage sludge ash/cement and nano aluminum oxide. International Journal of Transportation Science and Technology, 1(1), 83-99. doi:

27        Manso, J. M., Ortega-López, V., Polanco, J. A., & Setién J. (2013). The use of ladle furnace slag in soil stabilization. Construction and Building Materials, 40, 126-134. doi:

28        Nikookar, M., Bahari, M., Nikookar, H., & Arabani, M. 2013. The strength characteristics of silty soil stabilized using nano-clay. In Proceedings of theProc. of 7th Symposium on Advances in Science & Technology (7thsastech), 7-8 March, 2013. Khavaran Institute of Higher Education.


29        Ramaji, A. E. (2012). A review on the soil stabilization using low-cost methods. Journal of Applied Sciences Research, 8(4), 2193-2196. doi:

30        Sadeghi-Nik, A., Berenjian, J., Bahari, A., Safaei, A. S., & Dehestani, M. (2017). Modification of microstructure and mechanical properties of cement by nanoparticles through a sustainable development approach. Construction and Building Materials, 155, 880-891. doi:

31        Tabarsa, A., Latifi, N., Meehan, C. L., & Manahiloh, K. N. (2018). Laboratory investigation and field evaluation of loess improvement using nanoclay–A sustainable material for construction. Construction and Building Materials, 158, 454-463. doi:

32        Taha, M. R., & Alsharef, J. M. (2018). Performance of soil stabilized with carbon nanomaterials. Chemical Engineering Transactions, 63, 757-762. doi:

33        Taha, M. R., & Ying, T. (2010). Effects of carbon nanotube on kaolinite: basic geotechnical behavior. In Proceedings of theICCE-18, Anchorage, Alaska, USA.

34        Williams, D. B., & Carter, C. B. (1996). Transmission Electron Microscopy, Springer.

35        Xu, S., Xie, N., Cheng, X., Huang, S., Feng, L., Hou, P., & Zhu, Y. (2018). Environmental resistance of cement concrete modified with low dosage nano particles. Construction and Building Materials, 164, 535-553. doi:

36        Zahedi, M., Sharifipour, M., Jahanbakhshi, F., & Bayai, R. (2014). Nanoclay performance on resistance of clay under freezing cycles. Journal of Applied Sciences and Environmental Management, 18(3), 427-434. doi:

37        Zhu, R., & Lu, S. (2010) A high-resolution TEM investigation of nanoparticles in soils. In Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone (pp. 282-284): Springer.

38        Zsirka, B., Horváth, E., Makó, É., Kurdi, R., & Kristóf, J. (2015). Preparation and characterization of kaolinite nanostructures: reaction pathways, morphology and structural order. Clay Minerals, 50(3), 329-340. doi: